Description
给定一个长度为 \(n\) 的字符串,求至少出现 \(k\) 次的最长重复子串,这 \(k\) 个子串可以重叠。
\(1\leq n\leq 20000\)
Solution
预处理好 \(height\) 之后,比较显然的是答案就是一段连续 \(k\) 个后缀内最小 \(height\) 值最大值。用滑动窗口维护就好了。
Code
#includeusing namespace std;const int N = 20000+5, M = 1000000+5;int n, m, k, ch[N], x[N<<1], y[N<<1], c[M], sa[N], rk[N], height[N];int q[N], head, tail, ans;void get() { for (int i = 1; i <= n; i++) c[x[i] = ch[i]]++; for (int i = 1; i <= m; i++) c[i] += c[i-1]; for (int i = n; i >= 1; i--) sa[c[x[i]]--] = i; for (int k = 1; k <= n; k <<= 1) { int num = 0; for (int i = n-k+1; i <= n; i++) y[++num] = i; for (int i = 1; i <= n; i++) if (sa[i] > k) y[++num] = sa[i]-k; for (int i = 0; i <= m; i++) c[i] = 0; for (int i = 1; i <= n; i++) c[x[i]]++; for (int i = 1; i <= m; i++) c[i] += c[i-1]; for (int i = n; i >= 1; i--) sa[c[x[y[i]]]--] = y[i]; swap(x, y); x[sa[1]] = num = 1; for (int i = 2; i <= n; i++) x[sa[i]] = (y[sa[i]] == y[sa[i-1]] && y[sa[i]+k] == y[sa[i-1]+k]) ? num : ++num; if ((m = num) == n) break; } for (int i = 1; i <= n; i++) rk[sa[i]] = i; for (int i = 1, k = 0; i <= n; i++) { if (rk[i] == 1) continue; if (k) --k; int j = sa[rk[i]-1]; while (i+k <= n && j+k <= n && ch[i+k] == ch[j+k]) ++k; height[rk[i]] = k; }}void work() { scanf("%d%d", &n, &k); m = M-5; --k; for (int i = 1; i <= n; i++) scanf("%d", &ch[i]); get(); tail = -1; for (int i = 1; i <= n; i++) { while (head <= tail && i-q[head] >= k) ++head; while (head <= tail && height[i] <= height[q[tail]]) --tail; q[++tail] = i; if (i >= k) ans = max(ans, height[q[head]]); } printf("%d\n", ans);}int main() {work(); return 0; }